EarthEnergyEnvironmentPhysics

Here Is Why Engineers Should Always Consider Human Induced Vibration

Human induced vibration, vibrations that happen due to human footfall, often conjure images of Millennium Bridge-style swaying or buildings crumbling away. However, the reality is that the ‘damage’ caused by these vibrations is unlikely to destroy a structure, but it is likely to cause discomfort in people! Though not as dramatic as a structural failure, any engineer that is good at their job will want to ensure that those using their structures, from bridges to buildings, can do so safely and comfortably. This is why human induced vibration should always be considered within the creating process.

Resonance vs Impulse

Did you know that there are two ways that human-induced vibrations affect structures? The first being resonant, and the second impulse or transient response.

In simpler terms, resonance happens when Object A vibrates at the same natural frequency that Object B vibrates at. Object B resonates with this and begins to vibrate too. Think singing to break a wine glass! Although the person singing isn’t touching the glass, the vibrations of their voice are resonating with the glass’s natural frequency, causing this vibration to get stronger and stronger and eventually, break the glass. In the case of a structure, resonance occurs when the pedestrian’s feet land in time with the vibration.

However, impulse or transient vibration responses can cause problems on structures where its natural frequencies are too high for resonance to occur, for example, if the structure is light or it is stiff. Here the discomfort is caused by the initial “bounce” of the structure caused by the footstep and is a concern on light or stiff structures.

Engineers must always design buildings which will reduce the vibration effects caused by impulse or resonance.

Potential impacts from human induced vibration

Human induced vibration can lead to different effects upon the structure and its users. These can include:

  • Interfering with sensitive equipment. Depending on the building’s purpose, what it houses can be affected by the vibrations of people using the building. Universities and laboratories, for example, may have sensitive equipment whose accuracy and performance could be damaged by vibrations. Even in ordinary offices the footfall vibration can wobble computer screens, upsetting the workers.
  • Swaying bridges. One of the most famous examples of human-induced resonance impacting a structure occurred with the Millennium Bridge. As people walked across the bridge, the footsteps caused the bridge to sway, and everybody had to walk in time with the sway because it was difficult not to. Thankfully, this feedback can only occur with horizontal vibrations so building floors are safe from it, but footbridges need careful checking to prevent it.
  • Human discomfort. According to research, vibrations in buildings and structures can cause depression and even motion sickness in inhabitants. Tall buildings sway in the wind and footsteps can be felt, even subconsciously by the occupants. It has been argued that modern efficient designs featuring thinner floor slabs and wider spacing in column design mean that these new builds are not as effective at dampening vibrations as older buildings are. 
  • Jeopardising structural integrity. The build-up of constant vibrations on a structure can, eventually, lead to structural integrity being compromised. A worse-case scenario would be the complete collapse of the structure and is the reason some bridges insist that marching troops break step before crossing. Crowds jumping in time to music or in response to a goal in a stadium are also dynamic loads that might damage an under-designed structure.

Avoiding it

Modern designs that have thinner slabs and wider column spacing are prone to all forms of vibration, whether that be human-induced or otherwise, but short spans can also suffer due to their low mass. Using sophisticated structural design software helps engineers to test for and mitigate footfall and other vibrations when they are being designed .

Further Reading:

http://homepage.tudelft.nl/p3r3s/MSc_projects/reportRoos.pdf

https://phys.org/news/2017-03-impact-bridges-skyscrapers-human-health.html

https://phys.org/news/2017-03-impact-bridges-skyscrapers-human-health.html

https://www.quora.com/Whats-the-difference-between-resonance-and-aeroelastic-flutter

https://www.telegraph.co.uk/science/2017/03/19/wobbly-skyscrapers-may-trigger-motion-sickness-depression-warn/

Show More

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button
Close
Close